(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, a(b(y))) → f(a(b(x)), y)
f(a(x), y) → f(x, a(y))
f(b(x), y) → f(x, b(y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(x, a(b(y))) →+ f(a(b(x)), y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [y / a(b(y))].
The result substitution is [x / a(b(x))].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, a(b(y))) → f(a(b(x)), y)
f(a(x), y) → f(x, a(y))
f(b(x), y) → f(x, b(y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(x, a(b(y))) → f(a(b(x)), y)
f(a(x), y) → f(x, a(y))
f(b(x), y) → f(x, b(y))
Types:
f :: b:a → b:a → f
a :: b:a → b:a
b :: b:a → b:a
hole_f1_0 :: f
hole_b:a2_0 :: b:a
gen_b:a3_0 :: Nat → b:a
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
x,
a(
b(
y))) →
f(
a(
b(
x)),
y)
f(
a(
x),
y) →
f(
x,
a(
y))
f(
b(
x),
y) →
f(
x,
b(
y))
Types:
f :: b:a → b:a → f
a :: b:a → b:a
b :: b:a → b:a
hole_f1_0 :: f
hole_b:a2_0 :: b:a
gen_b:a3_0 :: Nat → b:a
Generator Equations:
gen_b:a3_0(0) ⇔ hole_b:a2_0
gen_b:a3_0(+(x, 1)) ⇔ a(gen_b:a3_0(x))
The following defined symbols remain to be analysed:
f
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
f(
x,
a(
b(
y))) →
f(
a(
b(
x)),
y)
f(
a(
x),
y) →
f(
x,
a(
y))
f(
b(
x),
y) →
f(
x,
b(
y))
Types:
f :: b:a → b:a → f
a :: b:a → b:a
b :: b:a → b:a
hole_f1_0 :: f
hole_b:a2_0 :: b:a
gen_b:a3_0 :: Nat → b:a
Generator Equations:
gen_b:a3_0(0) ⇔ hole_b:a2_0
gen_b:a3_0(+(x, 1)) ⇔ a(gen_b:a3_0(x))
No more defined symbols left to analyse.